skip to main content


Search for: All records

Creators/Authors contains: "Brubach, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In e-commerce, customers have an unknown patience in terms of how far down the page they are willing to scroll. In light of this, how should products be ranked? The e-commerce retailer’s problem is further complicated by the fact that the supply of each product may be limited, and that multiple customers who are interested in these products will arrive over time. In “Online Matching Frameworks Under Stochastic Rewards, Product Ranking, and Unknown Patience,” Brubach, Grammel, Ma, and Srinivasan provide a general framework for studying this complicated problem that decouples the product ranking problem for a single customer from the online matching of products to multiple customers over time. They also develop a better algorithm for the single-customer product ranking problem under well-studied cascade-click models. Finally, they introduce a model where the products are also arriving over time and cannot be included in the search rankings until they arrive. 
    more » « less
    Free, publicly-accessible full text available October 27, 2024
  2. Clustering is a fundamental unsupervised learning problem where a data-set is partitioned into clusters that consist of nearby points in a metric space. A recent variant, fair clustering, associates a color with each point representing its group membership and requires that each color has (approximately) equal representation in each cluster to satisfy group fairness. In this model, the cost of the clustering objective increases due to enforcing fairness in the algorithm. The relative increase in the cost, the “price of fairness,” can indeed be unbounded. Therefore, in this paper we propose to treat an upper bound on the clustering objective as a constraint on the clustering problem, and to maximize equality of representation subject to it. We consider two fairness objectives: the group utilitarian objective and the group egalitarian objective, as well as the group leximin objective which generalizes the group egalitarian objective. We derive fundamental lower bounds on the approximation of the utilitarian and egalitarian objectives and introduce algorithms with provable guarantees for them. For the leximin objective we introduce an effective heuristic algorithm. We further derive impossibility results for other natural fairness objectives. We conclude with experimental results on real-world datasets that demonstrate the validity of our algorithms. 
    more » « less
  3. Metric clustering is fundamental in areas ranging from Combinatorial Optimization and Data Mining, to Machine Learning and Operations Research. However, in a variety of situations we may have additional requirements or knowledge, distinct from the underlying metric, regarding which pairs of points should be clustered together. To capture and analyze such scenarios, we introduce a novel family of stochastic pairwise constraints, which we incorporate into several essential clustering objectives (radius/median/means). Moreover, we demonstrate that these constraints can succinctly model an intriguing collection of applications, including among others Individual Fairness in clustering and Must-link constraints in semi-supervised learning. Our main result consists of a general framework that yields approximation algorithms with provable guarantees for important clustering objectives, while at the same time producing solutions that respect the stochastic pairwise constraints. Furthermore, for certain objectives we devise improved results in the case of Must-link constraints, which are also the best possible from a theoretical perspective. Finally, we present experimental evidence that validates the effectiveness of our algorithms. 
    more » « less
  4. Clustering is a fundamental unsupervised learning problem where a dataset is partitioned into clusters that consist of nearby points in a metric space. A recent variant, fair clustering, associates a color with each point representing its group membership and requires that each color has (approximately) equal representation in each cluster to satisfy group fairness. In this model, the cost of the clustering objective increases due to enforcing fairness in the algorithm. The relative increase in the cost, the `''price of fairness,'' can indeed be unbounded. Therefore, in this paper we propose to treat an upper bound on the clustering objective as a constraint on the clustering problem, and to maximize equality of representation subject to it. We consider two fairness objectives: the group utilitarian objective and the group egalitarian objective, as well as the group leximin objective which generalizes the group egalitarian objective. We derive fundamental lower bounds on the approximation of the utilitarian and egalitarian objectives and introduce algorithms with provable guarantees for them. For the leximin objective we introduce an effective heuristic algorithm. We further derive impossibility results for other natural fairness objectives. We conclude with experimental results on real-world datasets that demonstrate the validity of our algorithms. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Column-sparse packing problems arise in several contexts in both deterministic and stochastic discrete optimization. We present two unifying ideas, (non-uniform) attenuation and multiple-chance algorithms, to obtain improved approximation algorithms for some well-known families of such problems. As three main examples, we attain the integrality gap, up to lower-order terms, for known LP relaxations for k-column sparse packing integer programs (Bansal et al., Theory of Computing, 2012) and stochastic k-set packing (Bansal et al., Algorithmica, 2012), and go “half the remaining distance” to optimal for a major integrality-gap conjecture of Furedi, Kahn and Seymour on hypergraph matching (Combinatorica, 1993). 
    more » « less